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Abstract. The density functional theory and sum-rule approach are used to calculate the
electronic chemical potential of large self-compressed metallic clusters in the stabilized-jellium
model and the two-component model that mimic the solid and the liquid state. The ionization
potential is defined as the sum of the electronic chemical potential for a neutral cluster, and
the ordinary electrostatic contributione2/2R. Using the analytic expressions derived, the
temperature dependencies of the work function and of the term connected with spontaneous
deformation have been estimated. The calculations show noticeable size-shrinkage contributions
to the ionization potential. In the two-component statistical version of the density functional
formalism, substantial changes induced by a transition from cold clusters to the liquid state are
observed.

1. Introduction

The size-dependent properties of metallic clusters are of considerable current interest,
both experimentally [1–3] and theoretically [4, 5]. Much attention has been paid to the
understanding of trends of measured ionization potentials (IP) and electron affinities (EA)
of clusters. The analysis of experimental data on these quantities for small metallic particles
(clusters) is usually carried out according to the formulae

IP = We0 + α
e2

R
+ O(R−2)

EA = We0 − β
e2

R
+ O(R−2)

(1)

whereWe0 is the electron work function for a planar surface andR is the cluster radius.
The dimensionless coefficientsα andβ are dominated by the contribution resulting from the
classical electrostatics which givesα = β = 1

2 [6]. In experiment one observes deviations
from this value which can be ascribed to a quantum defect. A recent review [3] of the
available experimental data shows that for clusters of K, Na, Li, Ag, and Al the fitting
values forα fall in the range between 0.32 and 0.45. In these analyses no self-compression
and temperature effects were taken into consideration.

In the limit R → ∞ the values of IP(R) and EA(R) for the closed-shell clusters should
reduce to the observed polycrystalline work functions for zero temperature. This is indeed
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observed for the simple metals. However, unlike such characteristics of metals as the work
function and surface energy, which at least for simple metals are monotonic functions of the
electron density, the experimental data onα do not permit any conclusion to be drawn about
the nature of the functionα(rs0). Herers0 is the electron density parameter, 4πr3

s0n̄0/3 = 1,
and n̄0 is the electron concentration in the bulk.

The calculations performed within various approaches for clusters [7–12] do not give
an unequivocal answer about the dependencies ofα(rs0) and β(rs0) either. They vary
weakly with rs0 and fall into the same range of magnitudes: 0.4 6 α(rs0) < 0.5 and
0.5 < β(rs0) 6 0.6. It should be noted that all of these calculations have been carried out
for rigid and cold clusters within the jellium model. It is well known that the ordinary
jellium model exhibits serious deficiencies such as negative surface energy forrs0 6 2a0

and negative bulk modulus forrs0 > 6a0 (a0 is the Bohr radius). These can be remedied
by using the stabilized-jellium model. In the latter model the lattice effects, or electron–
ion interactions, are represented in an averaged way, providing a more realistic description
of the bulk and surface properties of solid simple metals [13–15]. A calculation of self-
compression for Al, Na, and Cs clusters with the valence electron numberN 6 20 has been
performed by Perdewet al [16] in the framework of stabilized jellium.

According to a widely accepted point of view [17], for a large radius of the cluster, the
IP and EA can be expressed as

IP = −µe0 + e2

2R
− µe1

R
+ O(R−2)

EA = −µe0 − e2

2R
− µe1

R
+ O(R−2).

(2)

Comparing equations (1) and (2) we see that the quantitiesα and β denote the curvature
corrections to the IP and EA. Accordingly we have:α = 1

2 − µe1/e
2, β = 1

2 + µe1/e
2, and

µe(R) = µe0 + µe1/R is the electronic chemical potential for neutral cluster,µe0 = −We0.
The second term,e2/2R, has its origin in electrostatic ‘self-interaction’ of the surplus unit
charge. In the ‘thermodynamic limit’ the quantum-size correction,µe1/R, is a very delicate
characteristic, and is sensitive to errors in the variational procedure [9].

It should be noted that for experiments on clusters the interpretation of results usually
assumes that they arecold andrigid finite systems. In connection with this observation there
are two points worth mentioning: (i) the electron work function (which is an asymptotic
limit R → ∞ of the cluster IP) and surface tension of metals depend on the temperature
[18–20]; and (ii) the surface tension of a finite system leads to a shrinkage of the Wigner–
Seitz density parameter compared to its bulk value.

In this paper, we present calculations, based on a sum-rule approach, for elastic
liquid andhot solid clusters of simple metals which exhibit spontaneous deformation [17].
The self-compression follows from a condition of mechanical equilibrium for clusters in
vacuum. It is well known that flat-surface characteristics of liquid metals strongly depend
on temperature [20]. Only a few theoretical investigations have been devoted to the study
of the influence of temperature on the size effects within approaches that mimic a liquid
state [21–23]. For investigation of thermodynamic properties of metallic clusters we invoke
the two-component plasma model which places the ‘classical’ ions and conduction electrons
on an equal footing [19, 20]. This model has been shown to provide a realistic description
of surface tension of simple metals over a wide range of temperatures.

The sum-rule approach permits evaluation of size corrections in terms of quantities for
a planar surface. We will first present the density functional equations for a two-component
liquid metal, which will show the origins of the respective contributions to the size effect.
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Then corresponding equations for stabilized jellium are derived. The results of calculations
and possible applications are discussed in section 3. Finally, section 4 provides a summary
and conclusions.

2. Theory

2.1. The two-component model

For liquid clusters of monovalent alkali metals we employ a version of the density functional
theory which starts from the assumption that a statistical description of the electronic
subsystem of a cluster applies. The cluster size must be sufficiently large for the concepts
of Fermi energy and chemical potential to have meaning. On the other hand, it must be
sufficiently small for the size effects to be noticeable. The case considered here is the
limit of weak quantization, when the cluster contains hundreds of atoms and the electronic
chemical potential is much larger than the mean spacing between the electron energy levels
in the cluster.

The free energy of electron–ion plasma of the liquid cluster,F = F [ne(r, R), ni(r, R)]
is a functional of the inhomogeneous electronic (ne(r, R)) and ionic (ni(r, R)) concent-
rations. Using a gradient approximation, the free energy can be written in the form

F =
∫

d3r
(
f + fee |∇ne|2 + fei∇ne∇ni + fii |∇ni |2

)
+ e

2

∫
d3r φ(r, R)[ne(r, R) − ni(r, R)] (3)

wheref ≡ f [ne(r, R), ni(r, R)] is the energy density of the quasi-homogeneous part of the
functional corresponding to the local density approximation,faa ≡ faa(ne(r, R), ni(r, R))

gives the first inhomogeneity term represented by the gradient terms for both electrons and
ions (a = e, i), andφ is the electrostatic potential of the system.

The quasi-homogeneous part of the free energy, appearing in the first integral in
equation (3), takes into account the following components in the structural expansion
in terms of the weak electron–ion interaction described by the Ashcroft pseudopotential:
the electron kinetic energy and the exchange–correlation energy in the Nozières–Pines
approximation; the Madelung energy owing to the ion–ion interaction; the energy of
electron–ion interaction evaluated in the first order of perturbation theory; the band-structure
energy; and the entropy of the ideal degenerate electron gas and of the classical system of
ions represented by hard spheres. For the explicit forms of these components and of the
gradients terms we refer the reader to [20].

For the equilibrium density profiles,ne(r, R) andni(r, R), the functional�V [ne, ni ] =
F − µeNe − µiNi has a minimum and equals the Gibbs grand potential,� = −PV , where
P is the pressure in a system of volumeV , andµe,i andNe,i denote the chemical potential
and number of particles for electrons and ions, accordingly. Then, we can write out the
Euler–Lagrange equations for a two-component plasma of liquid metal:

µe(r, R) = +eφ(r, R) + δF/δne(r, R) (4)

µi(r, R) = −eφ(r, R) + δF/δni(r, R) (5)

where the electrostatic potential satisfies the Poisson equation

∇2φ(r, R) = −4πe[ne(r, R) − ni(r, R)]. (6)
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By definition the surface tension is

γ = 1

A
{F [ne(r, R), ni(r, R)] − F [n̄eθ(r − R), n̄iθ(r − R)]} (7)

where A = 4πR2 is the area of ‘equimolecular’ surface,n̄e = n̄i ≡ n̄ is the charge
concentration in the bulk, andθ(x) is the unit step function.

In order to employ the equations for a planar surface to describe spherical geometry it
is convenient to expandna, φ, µ andγ in powers of the inverse radius 1/R of the cluster,
i.e., na = na0 + na1/R, φ = φ0 + φ1/R, and so on. Then we may introduce the definition
of the ‘average over a flat surface’:

〈µa(x)〉 = − 1

n̄0

∫ ∞

−∞
dx µa(x)

d

dx
na0(x) (8)

where we have changed the variable:x = r − R, and we have made use of the limit
R → ∞. Following [9, 17], from the zero-pressure condition for a planar surface,P0 = 0,
and from the condition of mechanical equilibrium for the electron and ion components, we
obtain the following for a planar surface:

µ̄a0 = ±eφ̄0 + f̄ ′
a (9)

where the plus and minus signs correspond toa = e anda = i, respectively,

〈µe0〉 + 〈µi0〉 = f̄0/n̄0 (10)

γ0 = 2
∫ ∞

−∞
dx

(
fee |∇ne|2 + fei∇ne∇ni + fii |∇ni |2

) − 1

4π

∫ ∞

−∞
dx (∇φ0)

2 (11)

and for the curvature corrections:

µ̄e1 = +eφ̄1 + n̄e1f̄
′′
ee + n̄i1f̄

′′
ei (12)

µ̄i1 = −eφ̄1 + n̄i1f̄
′′
ii + n̄e1f̄

′′
ei (13)

〈µe1〉 + 〈µi1〉 = 2γ0

n̄0
(14)

φ̄1 = 2
∫ ∞

−∞
dx

[
φ0(x) − φ̄0θ(−x)

] + 4πe

∫ ∞

−∞
dx x [ne1(x) − ni1(x)] . (15)

The explicit derivation of the latter equality is given in appendix A. In the derivation of
equation (14) we have made use of equation (11). All of the quantities denoted by a bar
above them are taken in the cluster centre (that is forx → −∞). For explicit density
profiles,〈µ〉 must be equal tōµ andf̄0 ≡ f (n̄e0, n̄i0, rc0) is the free energy per unit volume
for uniform two-component plasma. Here,rc0 denotes the core radius of the pseudopotential
that is used to describe the electron–ion interaction. The primes denote derivatives with
respect ton̄a0 wherea = e, i: f̄ ′

a = ∂f̄0/∂n̄a0, f̄ ′′
aa = ∂2f̄0/∂n̄2

a0 and f̄ ′′
ei = ∂2f̄0/∂n̄e0 ∂n̄i0.

The sum of second derivatives gives the bulk modulus:

B0 = n̄2
0

(
f̄ ′′

ee + 2f̄ ′′
ei + f̄ ′′

ii

)
. (16)

Note that the derivatives must be taken in a frozen-core approximation,rc0 = constant.
Combining equations (12)–(14), using the charge neutrality condition [17] and equation (16),
we derive an explicit equality connecting the component concentration, surface tension, and
bulk modulus:

n̄e1 = n̄i1 = 2n̄0γ0/B0. (17)

This means that the component concentrations in the bulk of the cluster increase byn̄e1/R
compared to the case whereR → ∞. Thus, self-compression is a result of surface curvature
which creates the extra pressure, 2γ /R, in comparison to the planar surface case.
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Let us write the quantitiesµa1 and φ̄1 in the form of the sums(a = e, i)

µa1 = µ
rig

a1 + δµa1 (18)

φ̄1 = φ̄
rig

1 + δφ̄1 (19)

where the first terms appearing on the right-hand sides (r.h.s.) of equations (18) and (19)
correspond to a rigid cluster. For such a hypothetical, liquid cluster we have

n
rig

a1 (−∞) ≡ n̄
rig

a1 = 0

and following (12) and (13) one gets

µ
rig

a1 = ±eφ̄
rig

1 (20)

where

φ̄
rig

1 = 2
∫ ∞

−∞
dx

[
φ0(x) − φ̄0θ(−x)

] + 4πe

∫ ∞

−∞
dx x

[
n

rig

e1 (x) − n
rig

i1 (x)
]
. (21)

Consequently, for rigid clusters in the framework of a two-component description and
becausēµa1 = 〈µa1〉, equations (12) and (13) reduce to

µ
rig

e1 + µ
rig

i1 = 0. (22)

On the other hand, from equations (14), (18), and (23), the ‘self-compression’ sum rule
follows:

δµe1 + δµi1 = 2γ0

n̄0
. (23)

The term−2γ0/(n̄0R) defines the size correction to the cohesive energy for zero temperature.
The non-electrostatic terms on the r.h.s. of equations (12) and (13) may be easily

calculated, using the exact result (17). However, to determineφ̄1 given by equation (15),
it is necessary to solve entirely the problem of equilibrium electronic and ionic profiles for
a self-compressed metallic cluster. This can be circumvented by calculatingδφ̄1 from the
asymptotic expansion for̄φ(R) in powers of the differencēne(R) − n̄e0 = n̄e1/R. Leaving
only the first-order terms we have

φ̄(R) = φ̄0 + δφ̄1

R
= φ̄0 + φ̄′

0
n̄e1

R
(24)

where φ̄′
0 = dφ̄0/dn̄ is calculated in each case with̄n = n̄0 and for constantrc. Using

equations (17), (19), and (24), one can extract from equations (12) and (13) the self-
compression parts to get

δµe1 = 2γ0

n̄0

[
1 − n̄2

0

(
f̄ ′′

ii + f̄ ′′
ei − eφ̄′

0

)
B0

]
(25)

and

δµi1 = 2γ0

n̄0

[
1 − n̄2

0

(
f̄ ′′

ee + f̄ ′′
ei + eφ̄′

0

)
B0

]
. (26)

It can be seen that these expressions allow the effects of self-compression on the IP and
EA of clusters to be predicted from these quantities for a liquid metal with a flat surface.
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Figure 1. The values ofαrig = 1
2 −µ

rig

e1 (see the text) calculated within different approaches for
rigid and cold clusters of simple metals:�, [7]; ♦, [8]; ×, [9]; ∗, [10]; M, [11]; ◦, [12]. They
are compared with the experimental data (�, [3]) and the present stabilized-jellium estimation
(•) of δα = 1

2 − δµe1 (right-hand scale).

2.2. The stabilized-jellium model

In the framework of a stabilized-jellium (one-component) model, using our results [17] for
large clusters, and taking into account their self-compression, we have

µe1 = φ̄e1 + n̄e1
[
n̄0ε̄

′′
0 + ε̄′

j0

]
(27)

where ε̄0 = ε̄j0 + 1ε̄0, where ε̄0 and ε̄j0 are the average energies per electron for the
stabilized jellium and ordinary jellium respectively. Here1ε̄0 is a sum of the Madelung
energy of a point ion embedded in a uniform negative charge background and the Ashcroft
pseudopotential averaged over the spherical Wigner–Seitz cell. Note that the band-structure
energy is neglected in these expressions. For the explicit form, cf. [15] or [17]. The primes
denote the derivatives taken with respect ton̄0. For this model, in equations (6) and (15)
the substitutions

ni0(x) → n̄0θ(−x) and ni1(x) → n̄e1θ(−x)

are made, because the ionic background is a step function. In this case one can write for
δµe1 a formula similar to (25) and (26):

δµe1 = 2σ0

n̄0

1 +
n̄2

0

(
ε̄′
j0 + eφ̄′

0

)
B0

 (28)

whereσ0 is surface energy, and the bulk modulusB0 = n̄3
0ε̄

′′
0. Thus, we have derived a

simple expression forδµe1 which applies to solid clusters of simple metals.
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3. Results and discussion

At this point it is convenient for the purposes of the following discussion and to enable a
comparison to be made with previous rigid-cluster computations to introduce the notation

αrig = 1

2
− µ

rig

e1

e2
= 1

2
− φ̄

rig

1

e2

δα = 1

2
− δµe1

e2
.

In figure 1 we have plotted the values of the coefficientαrig calculated for zero temperature
by different authors [7–12]. They are compared with the available experimental data [3].
Calculations for rigid clusters performed using the ordinary jellium model indicate the
increase of electron density to spill out beyond the spherical boundary with the growth of
its curvature. This infers that the bottom of the potential,φ̄rig(R) < 0, becomes more
positive with the decrease ofR—that is,φ̄rig

1 > 0. As can be observed from figure 1, most
of the calculations show thatαrig decreases with increase ofrs0. On the other hand the
experimental data forα are very scattered and do not show any regular trend. A possible
reason of this is the dependence of the IP on the cluster temperature, and the effect of
compression under surface tension.

Table 1. The quantities (in atomic units) extracted from the Kohn–Sham calculation for the
planar surface of stabilized jellium and the results for the correction to the electron chemical
potentialδµe1. σ0 is the surface energy (1 dyn cm−1 = 6.42× 10−7 au), ε̄′

j0 is the derivative of

the bulk energy of jellium,̄φ′
0 is the derivative of the surface dipole barrier, andB0 is the bulk

modulus (1 Mbar = 3.41× 10−3 au).

Metal rs0 T (K) (2σ0/n̄0) × 102 ε̄′
j0 −φ̄′

0 B0 × 104 δµe1 × 102

Al 2.055 0 4.3789 3.3961 4.0550 57.210 3.997
2.070 300 4.4152 3.3977 4.0836 53.608 4.006
2.078 466.5 4.4349 3.3984 4.0995 51.718 4.010
2.101 933∗ 4.4889 3.3999 4.1441 46.806 4.017

Na 3.906 0 5.8671 0.8487 7.5970 2.978 3.733
3.959 186 5.8717 0.6906 7.6953 2.635 3.562
3.990 293 5.8739 0.5975 7.5536 2.458 3.526
4.012 371∗ 5.8754 0.5286 7.7918 2.337 3.382

Cs 5.580 0 5.7718 −6.4471 10.6341 0.730 3.223
5.630 92 5.7646 −6.7421 10.0111 0.674 3.200
5.662 150.5 5.7600 −6.9319 10.7677 0.640 3.006
5.744 301∗ 5.7478 −7.4288 10.9020 0.562 2.776

∗ The melting temperature,Tm.

3.1. The stabilized-jellium model

Consider the solid clusters first. As we have shown—equation (28)—the effect of self-
compression can be estimated using the results for a planar surface of stabilized jellium.
It is well known from density functional calculations that for simple metals the surface
dipole barrierφ̄0 is monotonic function ofrs0 or n̄0. Therefore in order to determine the
derivative φ̄′

0 = dφ̄/dn̄0 appearing in equation (28) we may use the results of the Kohn–
Sham calculations for a planar surface performed earlier by one of us [14, 15]. By numerical



4252 A Kiejna et al

fitting, the dependencēφ0(n̄0) can be obtained for the whole metallic density range. In this
work, however, we have found thatφ̄′

0 is determined more accurately by direct numerical
calculation of the derivative of the surface dipole barrier for the density corresponding to a
given metal. As a result, for every metal we have performed two additional calculations:
one for slightly higher density (rs), and one for slightly lower density. Thēφ′

0 calculated
in this way and the other quantities appearing in (28) which were used in the calculation of
δµe1 are listed in table 1. As is seen, the values ofδµe1 calculated in the stabilized-jellium
model for Al, Na, and Cs are very close each to the other (the difference between the values
for Al and Cs does not exceed 0.008). They are of magnitude comparable to that of the
previous calculations of12 − αrig (see figure 1). This means that self-compression has a
noticeable influence upon the IP and EA of cold clusters, decreasing the size corrections
predicted by the rigid-cluster calculations. This conclusion is in accordance with the results
of Perdewet al [16] for Al clusters, but theirδµ1 (denoted as1c) was found to be negligible
for Na and Cs. Montaget al [24], using a structure-averaged-jellium model, reported that
the compression gives a sizeable effect for all sorts of metallic clusters, being largest for
the densest metals.

Table 1 shows also the temperature dependence ofδµe1. For aluminiumδµe1 increases
with temperature, whereas for Na and Cs the opposite effect is observed. This behaviour of
δµe1 is determined by the interplay between theε̄′

j0- and φ̄′
0-terms in equation (28). Note

that the bulk modulusB0 is a decreasing function of temperature.

Table 2. The temperature dependence of the work functions for the flat surfaces of simple
metals represented by the stabilized-jellium model.λ is the linear thermal expansion coefficient.
We0 is the work function.

Metal rs0 T1 (K) λ (K−1) T (K) We0 (eV)

Al 2.07 300 24×10−6

2.055 0 4.276
2.078 466.5 4.259
2.101 933∗ 4.241

Na 3.99 293 7.2×10−5

3.906 0 2.983
3.959 186 2.949
4.012 371∗ 2.924

Cs 5.63 92 9.7×10−5

5.580 0 2.264
5.662 150.5 2.241
5.744 301∗ 2.212

∗ The melting temperature,Tm.

To discuss the effect of temperature it is useful to consider the temperature dependence
of the electron work function for a planar surface, which enters the definitions (1) for the
IP and EA of clusters. We have performed the stabilized-jellium calculation of the work
function for three different metals (Al, Na, and Cs) at the temperaturesT = 0, Tm/2, and
Tm, whereTm is the melting temperature. In the stabilized-jellium model the work function
depends only on the average electron concentration in the metal interior (or on the density
parameterrs). A simple temperature-independent linear coefficient of thermal expansion,
λ, for the Wigner–Seitz radius has been assumed thus:

rs = rs0[1 + λ(T − T1)].

Note that now the pseudopotential core radiusrc is determined forrs corresponding to a
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given temperature, i.e.,rs is treated as a material parameter. The results are summarized
in table 2. For Al surfaces the temperature gradient of the work function is negative and
equals−3.8 × 10−5 eV K−1. For Na and Cs it is also negative, and is larger. For Na
surfaces it equals−1.8 × 10−4 to −1.4 × 10−4 eV K−1 and for Cs it equals−1.5 × 10−4

to −1.9 × 10−4 eV K−1. Note that for ordinary jellium the temperature derivative of the
work function is negative and of the same order of magnitude [18].

Comparing the results of tables 1 and 2 we see that for Al clusters the size effect of
δµe1 may compensate the effect of temperature onWe0 and thus the IP will stay constant.
For Na and Cs both the IP andWe0 decrease with temperature.

3.2. The two-component model

In the second step we have estimated the influence of self-compression on the IP and EA
for hot and liquid clusters using the equations of the previous section. To this end the
temperature dependences ofγ0, We(T ), andφ̄0(T ) were computed for the concentrationn̄e

of Na and Cs at the saturation line, following the approach of [20]. (The input parameters
for liquid Al were not available to us.)

The exact numerical solution of the system of the Euler–Lagrange equations, or the
evolution of the minimum of the functionalF [ne0(x), ni0(x)] and calculation of the optimum
distributionsne0(x) andni0(x), is quite complicated. Therefore, we have employed the direct
variational method with the one-parameter trial functions

ne0(x) = n̄0/(1 + ex/L) = n̄0

∞∑
k=0

(−1)kebx/L (29)

whereb = k for x < 0, andb = −(k + 1) for x > 0, for the electron distribution, and

ni0(x) = n̄0/(1 + ex/M) (30)

for the ion concentration. The of parametersL and M are optimized by determining the
global minimum ofγ0(L, M) for every temperature. Since the minimum ofγ0(L, M) is
very shallow, the accuracy of the calculation was checked by determiningL andM using
equation (13). The details of the calculational procedure are given in [20].

Table 3. The calculated electron work functions for flat surfaces of liquid Na and Cs in the
two-component model.

Work function (eV)

Metal Temperature This work Theory [20] Experiment

Na Tm 2.06 1.72 2.39a

450 2.32a

600 1.85 1.42
1000 1.52 0.86

Cs 0 1.81b

Tm 1.58 1.31
600 1.32 1.00
1000 0.87 0.51

a Alchagirov et al [25].
b Fomenko and Podchernyaeva [26].

Our results forγ0 agree quite well with the calculations performed in [20] where another
form of the trial function was used. The electron work function for a semi-infinite liquid



4254 A Kiejna et al

metal was obtained via definition (8). At the triple point (see table 3), the calculated values
of We0 are 10–20% lower than the measured ones [25, 26]. The decrease inWe0(T ) was
found to be weaker than that calculated in [20]. These values are sensitive to the choice of
trial functions.

Table 4. The input data and results for the size-compression correction to the chemical potential
of liquid clusters calculated from equation (26) and (27). For each metal three different
temperatures were considered:T = Tm, 600 K, 1000 K (ordered from the top to the bottom).

B0 × 102

(2γ0/n̄0)

Metal rs0 ×102 f̄ ′′
ee −f̄ ′′

ii f̄ ′′
ei −φ̄′

0 Calc. Exp. [27] δµe1 δµi1

Na 4.048 5.93 7.218 17.279 15.144 9.27 2.619 1.835 3.84 2.09
4.129 5.30 8.011 24.448 14.740 11.0 1.499 1.438 4.67 0.63
4.292 4.03 9.452 34.007 14.051 15.3 0.324 1.074 9.34−5.31

Cs 5.785 8.30 19.401 32.442 23.584 6.20 0.518 0.494 8.66−0.62
5.975 7.37 24.463 53.571 26.390 6.41 0.296 0.345 13.8−6.47
6.276 5.65 31.218 81.667 30.471 7.50 0.0979 0.198 29.2−23.5

The magnitude ofδφ1 is evaluated by use of1φ̄0/1n̄, where 1n̄ = ±0.01n̄0, for
every estimated temperature. The results of calculations are displayed in table 4 where
the curvature correction of equations (26) and (27) is decomposed into the individual
contributions. These are relatively large, and tend to cancel each other. The orders of
magnitude ofγ0, φ̄′

0, B0 and δµe1 estimated within the two-component description agree
with the corresponding quantities given in table 1.

The calculations of bulk modulus at high temperatures are performed here, as far as we
are aware, for the first time. At the triple point and atT = 600 K the calculated values
of B0 agree reasonably well with the experimental ones [27], but atT = 1000 K there are
considerable deviations. Possible reasons for this are as follows.

(i) The using of the frozen pseudopotential radii in a variational procedure,rc(T ) = 1.90
and 3.215a0 for Na and Cs respectively. (Nevertheless, a detailed analysis in [20] gave
rc = 1.84(Tm) and 1.96(1000 K) for sodium which is not much different to the values
employed by us.)

(ii) The neglect of fourth-order gradient terms in the energy.
(iii) A strengthening of the role of electron correlations in the screening of the ion–

ion interaction at high temperatures. The form of the band-structure energy, which in
general describes this interaction, depends on the Fourier transform of the screened ion–ion
interaction and the Percus–Yevick hard-sphere structure factor for a fluid [28]. This term
gives a considerable contribution toB0 as was noticed earlier. Following the model of [29]
we have neglected it inf ′′

ii , but it was taken into account inf ′′
ee andf ′′

ei .

As is seen from table 4, the results forδµe1(T ) calculated in the framework of
this approach show a strong increasing tendency with the increased temperature which
contradicts the trend observed by us for solid clusters of these metals (compare table 1).
This leads to the decrease of the value ofα. It is also seen that our data forδµe1(T ) and
δµi1(T ) are modelled very well by the self-compression sum rule (23). Further study is
needed to resolve whether for Na and Cs the effect is real or whether it is a consequence
of using two different models which may be inconsistent.
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3.3. The effect on the static polarizability

The size shrinkage can be also introduced into the theory of static polarizability and the shift
of the surface plasma resonance of closed-shell clusters. The influence of self-compression
on the static polarizability,αs , of a spherical cluster can be estimated in a simple way.
Following the density functional analysis of Snider and Sorbello [30], the polarizability,
α

rig
s , of a large rigid cluster of radiusRrig = rs0N

1/3, whereN ≡ Ne, can be expressed as

αrig
s = (Rrig + δs)

3 (31)

whereδs = x0 + O(1/R), in the limit R → ∞, gives the positionx0 of the centre of mass
of the charge which is induced at the planar surface [31] by a weak external electric field.

We can write an analogous formula for the polarizability when the self-compression
occurs. By expressing the cluster radius in the formR = rsN

1/3 and taking into account
that the difference betweenrs andrs0 is given [17] by the ratiors/rs0 = (1+2σ0/(B0R))−1/3,
we obtain

αs(N) = Nr3
s0(1 + 1/N1/3) (32)

where 1 = (3x0 − 2σ0/B0)/rs0. Simple estimates for stabilized jellium are1 = 0.94,
0.82, 0.73, and 0.66 for solid Al, Li, Na, and K, respectively, and demonstrate that self-
compression compensates the size dependence of the polarizability by 50%, approximately.
Unfortunately, the values ofαs(N) have been measured for small clusters of K, Na, and Al
(see, for example, [3]), and our theoretical dependencies describe experimental data only
qualitatively.

Assuming that all of the dipole oscillator strength is exhausted by the surface plasma
resonance atωr , we can estimate it in terms ofαs , as has been suggested by Lushnikov
et al [32]:

ωr = (N/αs(N))1/2.

Here the dependenceαs(N) corrects the classical Mie frequencyωMie = ωp/
√

3, whereωp

is the bulk plasma frequency, via a factorωr/ωMie = 1−1/2N1/3. Thus, as was remarked
by Kreibig and Genzel [33], self-compression leads to a weakening of the red-shift tendency
for the plasmon peak position. A shift of the surface plasmon peak to lower frequencies
(red-shift), as the cluster size decreased, was investigated experimentally by Brechignacet al
[34, 35]. The experiments were performed for large clusters of K+

N (for N = 500, 900) and
Li+N (in the size range up toN = 1500). For these values ofN one can neglect the effect of
electrostriction in the estimation ofωr . However, taking into account the experimental error
(±0.05 eV) and the temperature of the clusters (about 700 K), which may contribute to a
shift ∼0.06 eV, it is difficult to draw any firm conclusions about a role of self-compression
in these experiments.

4. Summary and conclusions

The clusters prepared in supersonic expansion experiments are most probably in a hot
environment or even in a liquid-like state [2, 3]. In this paper we have studied the effect
of temperature-dependent size shrinkage on the ionization potentials of solid and liquid
clusters. We have derived the analytical expressions and sum rules for clusters. They allow
the compression corrections to be calculated from data for flat surfaces. We have employed
two models: a stabilized-jellium model for solid clusters; and a two-component plasma
model for the liquid case.
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We have reported self-consistent Kohn–Sham results for the temperature-dependent work
function of a planar surface of stabilized jellium. The temperature derivative of the work
function is found to be negative for all of the metals considered. Our calculations have
shown that temperature-dependent self-compression has a significant effect on the ionization
potentials and the electron affinities of solid- and liquid-metal clusters. Consequently it is
essential that these effects are included in any analysis of measured data. We have calculated
the bulk modulus of liquid alkali metals, which is found to be in reasonable agreement with
measured values. The temperature dependence ofµ

rig

e1 (T ) is beyond the scope of our
investigation, and awaits further study in the future.

Finally, using our numerical results we have analysed the influence of size shrinkage
on the static polarizability and on the shift of the plasmon resonance peak. It is shown
that simple estimates that take these effects into account can provide some insight into the
physics behind the measured trends for real clusters.
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Appendix A. The explicit expression forφ̄1

We start from the Poisson equation (6) with boundary conditions forr > R:

lim
r→∞ φ(r, R) = 0 lim

r→∞ dφ(r, R)/dr = 0.

After expansion of the electrostatic potential in powers of the inverse cluster radius 1/R

and making the change of variablex = r − R, in the limit R → ∞, we obtain the first two
equations of the hierarchy:

d2φ0(x)

dx2
= −4πe [ne0(x) − ni0(x)] (A.1)

d2φ1(x)

dx2
+ 2

dφ0(x)

dx
= −4πe [ne1(x) − ni1(x)] (A.2)

with the boundary conditionsφ0,1(+∞) = 0 and dφ0,1(x)/dx|x=+∞ = 0.
Integration of (A.2) fromx to ∞ yields

φ0(x) = 2
∫ ∞

x

dx ′ φ0(x
′) − 4πe

∫ ∞

x

dx ′
∫ ∞

x ′
dx ′′ [

ne1(x
′′) − ni1(x

′′)
]
. (A.3)

Performing integration by parts for the last term in (A.3) and settingx = 0, we have

φ1(0) = 2
∫ ∞

0
dx φ0(x) + 4πe

∫ ∞

0
dx x [ne1(x) − ni1(x)] . (A.4)

On the other hand, by integrating (A.2) in the range−∞, x and settingx = 0, one can
write

φ̄1 − φ1(0) = 2
∫ 0

−∞
dx

[
φ0(x) − φ̄0

] + 4πe

∫ 0

−∞
dx x [ne1(x) − ni1(x)] . (A.5)

Combining (A.5) and (A.4), we finally arrive at equation (15).
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